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Abstract

We are concerned with design of decentralized control strategy for stochastic
systems with global performance measure. It is possible to design optimal
centralized control strategy, which often cannot be used in distributed way.
The distributed strategy then has to be suboptimal (imperfect) in some
sense. In this paper, we propose to optimize the centralized control strat-
egy under the restriction of conditional independence of control inputs of
distinct decision makers. Under this optimization, the main theorem for
the Fully Probabilistic Design is closely related to that of the well known
Variational Bayes estimation method. The resulting algorithm then re-
quires communication between individual decision makers in the form of
functions expressing moments of conditional probability densities. This
contrasts to the classical Variational Bayes method where the moments are
typically numerical. We apply the resulting methodology to distributed
control of a linear Gaussian system with quadratic loss function. We show
that performance of the proposed solution converges to that obtained using
the centralized control.

1 Introduction

Complexity of large-scale uncertain systems, such as tra�c light signalization in urban areas,
prevents e�ective use of centralized design of control strategy. The technology of multi-
agent systems [1] o�ers technical background how to build a distributed control system.
The mainstream multi-agent theory is concerned with deterministic systems for which the
majority of results on communication protocols and negotiation strategies are established.
As a result, many stochastic problems are converted into deterministic formulation and
solved as such. This is typical e.g. in design of distributed tra�c light control, where the
certainty equivalence assumption is used in all agents [2].

Design methodologies for optimal control strategies of large-scale decentralized stochastic
systems are available, e.g. [3], however, the complexity of the decision maker is rather high.
In this paper, we propose to design suboptimal (imperfect) decision makers by imposition
of additional restrictions within an established centralized design methodology. Speci�cally,
we focus on the theory of Fully Probabilistic Control Design (FPD) [4, 5] for centralized
control strategies. This theory is based on minimization of Kullback-Leibler divergence
(KLD) [6] and it has been extended to multiple participants using heuristic arguments
[7, 8]. An independently developed variant of this approach was used in multi-agent setup
in [9]. In this paper, we enforce distribution of control between decision makers via the
constraint of conditional independence. Minimization of Kullback-Leibler divergence under
this constraint is well known as the Variational Bayes approach [10, 11]. Generalization of
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these results yields a design methodology of approximate decision makers that are capable to
design their own control strategy using probabilistic moments obtained from their neighbors.

We study two computation schemes in this contribution. The �rst scheme allows unlimited
communication with small messages. The second scheme allows much lower number of
messages, however, the messages contain much more information than in the �rst case. In
both cases, the Variational Bayes approach is capable to compute approximate results in
limited time depending on the number of iterations.

2 Review of Centralized Fully Probabilistic Design

Consider a probabilistic model of a stochastic system

yt v f(yt|ut, dt−m:t−1), (1)

where symbol y v f denotes that y is a realization from probability density f ; vector yt
denotes system output at discrete time t; vector ut is system input; dt = [y′t, u

′
t]
′ is an

aggregation of output and input, where (.)′ denotes a transposition of vector or matrix; and
dt−m:t−1 = [dt−m, . . . , dt−1] is a matrix of the last m observation vectors. Our aim is to
design a probabilistic control strategy f (ut|d1:t−1) such that the closed loop behavior is as
close to the desired behavior as possible.

The Fully Probabilistic Design is based on probabilistic description of the desired behavior
represented by the target (ideal) probability density, If(d1:t+h), which expresses its aim
and constraints. Closeness of the real and the target behavior is measured by the Kullback-
Leibler divergence. The optimal control strategy on a horizon of length h is then found
recursively for τ = t+ h, . . . , t+ 1,

of(uτ |d1:τ−1) = arg min
f(uτ |d1:τ−1)

KLD

[
f(dt+1:t+h)||If(dt+1:t+h)

]
, (2)

= arg min
f(uτ |d1:τ−1)

Ef(dτ |d1:τ−1)

[
ln

f(dt+1:t+h)
If(dt+1:t+h)

]
, (3)

where Ef(x)(.) is the expected value of the argument with respect to probability density
f(x); it is abbreviated as Ef(x)(x) ≡ E(x) when no confusion can arise. KLD(.||.) is
the Kullback-Leibler divergence between the �rst and the second argument. The optimal
solution can be found in the following form, [12]:

of (uτ |d1:τ−1) = If(uτ |d1:τ−1)
exp[−ω(uτ , d1:τ−1)]

γ(d1:τ−1)
. (4)

Here, functions ω(.) and γ(.) are recursively evaluated as

ω(uτ , d1:τ−1) = Ef(yτ |uτ ,d1:τ−1)

(
ln

f(yτ |uτ , d1:τ−1)
γ(d1:τ )If(yτ |uτ , d1:τ−1)

)
, (5)

γ(d1:τ−1) =
ˆ

If(uτ |d1:τ−1) exp[−ω(uτ , d1:τ−1)] duτ , (6)

initialized at time τ = t+ h as γ(d1:t+h) = 1.

2.1 Special case of Linear Quadratic design

Linear Quadratic Gaussian (LQG) control arise as a special case of FPD (4)�(6), when both
the model and the target probability densities are Gaussian with linear function of their
mean value:

f(yt|ut, d1:t−1) = N (Θψt, R), (7)

If(yt, ut|d1:t−1) = N
([

yt
ut

]
,

[
Qy 0
0 Qu

])
. (8)

Here, N (µ,Σ) denotes Gaussian probability density with mean value µ and covariance Σ;
Θ is a matrix of known parameters; ψt is a vector composed from an arbitrary combination
of elements of yt−m:t−1 and ut−m:t, and any deterministic transformation of these elements.
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Substitution of (8) into (5) at τ = t+ h, i.e. γ(d1:t+h) = 1, yields:

ω(uτ , d1:τ−1) =
1
2
[

ln(QyR−1)− ny + tr(RQ−1
y ) + (Θψτ − yτ )′Q−1

y (Θψτ − yτ )
]
, (9)

= [ψ′τ , 1]Ψτ [ψ′τ , 1]′ (10)

where ny denotes dimension of vector yτ . Note that the �rst three terms in ω(.) are inde-
pendent of uτ and yτ making them irrelevant to this time step. Evaluation of probability
of(uτ |φτ ) from (4) is achieved by reordering the quadratic form in (10) into

[ψ′τ , 1]Ψτ [ψ′τ , 1]′ = [uτ , φ′τ , 1]Ψω,τ [uτ , φ′τ , 1]′, (11)

where uτ was extracted from ψτ (the rest of the elements from ψτ are in vector with time-
delayed values, φτ , related to the time τ), and Ψω,τ is composed of the same elements as
Ψτ in adapted order with respect to vector [uτ , φ′τ , 1]. Since (8) is independent in yτ and
uτ , the marginal on uτ can be written as

f(uτ |d1:τ−1) ∝ exp
(
−1

2
[uτ , φ′τ , 1]Ψu,τ [uτ , φ′τ , 1]′

)
, Ψu,τ =

 Q−1
u 0 Quuτ
0 0 0

u′τQ
−1
u 0 uτQ

−1
u uτ

 .
The joint probability density (4) is then a quadratic form (11) with kernel Ψf,τ = Ψω,τ +
Ψu,τ . The kernel can be decomposed using Cholesky factorization into Ψf,τ = LτL

′
τ where

lower triangular matrix Lτ is decomposed into Lτ =
(

Υτ 0
Ωτ Λτ

)
, with Υτ being triangular

matrix of the same dimension as uτ . Probability density (4) has form
of(uτ |φτ ) = N (−(Υ′τ )−1Ωτ [φ′τ , 1]′, (ΥτΥ′τ )−1). (12)

and the remainder

γ(d1:τ−1) = exp
(
−1

2
[φ′τ , 1]ΛτΛ′τ [φ′τ , 1]′

)
. (13)

The recursion from τ = t+ h to t reveals the same quadratic forms with the exception that
there are additional element in Ψf,τ from function γ(d1:τ−1).

The mean value of (12), i.e. ûτ = −(Υ′τ )−1Ωτ [φ′τ , 1]′, is equivalent to LQG designed strategy
with loss function given by the quadratic form from (9) in exp(.) [4].

3 Distributed FPD via Variational Bayes

Consider a case where (1) describes a complex system, with vector inputs ut =
[u1,t, . . . , un,t], where vectors ui,t, i = 1, . . . , n are logically separated so that they rep-
resent independent decision makers. Without any additional assumptions on the model (1),
solution (2) would be a complex probability density with no guide how to implement it in
a distributed way.

As a �rst step to decentralization of the control strategy, we impose the restriction of
conditional independence of control inputs

f(ut|.) =
n∏
i=1

f(ui,t|.),∀t. (14)

If the solution is in this form, each decision maker can handle its own inputs via f(ui,t|·).
The task is to �nd a way how to design it.

We repeat minimization (3), under constraint (14)
n∏
i=1

of(ui,τ |d1:τ−1) = arg minQ
i f(ui,τ |·)

Ef(dτ |d1:τ−1)

[
ln

f(dt+1:t+h)
If(dt+1:t+h)

]
. (15)

Using the chain rule of probability calculus and de�nitions (5)�(6) we obtain
n∏
i=1

of(ui,τ |d1:τ−1) = arg minQ
i f(ui,τ |·)

KLD

[
f(uτ |d1:τ−1)||of(uτ |d1:τ−1)

]
. (16)
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Minimum of (16) is well known from the Variational Bayes method [11] to satisfy the fol-
lowing set of conditions:

of(ui,τ |d1:τ−1) ∝ exp
(
Ef(u/i,τ |d1:τ−1) [ln of(uτ |d1:τ−1)]

)
, i = 1, . . . , n. (17)

Here, u/i,τ denotes a subset of elements of vector uτ without the element ui,τ , i.e. u/i,τ =
[u1,τ , . . . , ui−1,τ , ui+1,τ , . . . , un,τ ], and ∝ is equality up to normalizing constant.

Substitution of (4) into (17) at each step on the horizon, τ = t + h, . . . , t + 1, yields the
following set of implicit equations for i = 1, . . . , n,

of(ui,τ |d1:τ−1) ∝ exp
(
Ef(u/i,τ |d1:τ−1)

(
ln If(uτ |d1:τ−1)− ω(uτ , d1:τ−1)

))
, (18)

The normalizing constant of (18) is

γi(d1:τ−1) =
ˆ

exp
(
Ef(u/i,τ |d1:τ−1)

[
ln If(uτ |d1:τ−1)− ω(uτ , d1:τ−1)

])
dui,τ , (19)

hence γ(d1:τ−1) required in (5) of the previous step factorizes into γ(d1:τ−1) =∏n
i=1 γi(d1:τ−1).

Typically, set (18) does not have a closed form solution and must be solved iteratively using
the iterative VB (IVB) algorithm. It has been shown that the IVB algorithm monotonically
decrease the KLD in each iteration and thus converging to a local minimum [13].

Note that d1:τ−1 in f(ui,τ |d1:τ−1) are symbolic random variables. This contrasts to the
typical application of the Variational Bayes where d1:τ−1 are measured data.

3.1 Special case of LQG

For the special case of linear Gaussian system discussed in Section 2.1, the Variational Bayes
method [11] is to be applied to Gaussian probability density (12) with logarithm

lnf(uτ |d1:τ−1) = c− 1
2

(uτ − (Υ′τ )−1Ωτ [φ′τ , 1]′)′(ΥτΥ′τ )−1(uτ − (Υ′τ )−1Ωτ [φ′τ , 1]′) (20)

= c− 1
2

[u′τ , φ
′
τ , 1]Φτ [u′τ , φ

′
τ , 1]′, (21)

Here, we use the same notation as in the previous section for φτ , Υτ , and Ωτ , c = ln |Υτ |
which is independent of control action uτ , and Φτ is the kernel of quadratic form (21).
For simplicity, we consider partitioning uτ = [u1,τ , u2,τ ]′, generalization to n partitions
is straightforward. The expected value of (20) with respect to f(u2,τ |d1:τ−1) is again a
quadratic form

Ef(u2,τ |d1:τ−1)(ln f(uτ |d1:τ−1)) = Ef(u2,τ |d1:τ−1)

(
c− 1

2
[u2,τ , ζτ ]

[
Φuu,τ Φuζ,τ
Φζu,τ Φζζ,τ

]
[u′2,τ , ζτ ]′

)
(22)

= c− 1
2

[Ef(u2,τ |d1:τ−1)(u2,τΦuu,τu2,τ ) + ζτΦζu,τE(u2,τ ) + E(u2,τ )Φuζ,τζτ + ζτΦζζ,τζτ ]

(23)

= c− 1
2
ζτΦu1,τζτ , (24)

where Φuu,τ ,Φuζ,τ ,Φζζ,τ are composed of elements of Φτ restructured to match the new
decomposition of the [uτ , φ′τ , 1] to u2,τ , ζτ = [u1,τ , φ

′
τ , 1] and Φu1,τ is given by reordering to

match the quadratic form in ζτ .

Note that (24) is equivalent to (10) and the control law can be obtained using the same
derivation that lead to (12). In this case

f(u1,τ |d1:τ−1) = N (Q1,τ [φ′τ , 1]′, σ1,τ ), (25)

f(u2,τ |d1:τ−1) = N (Q2,τ [φ′τ , 1]′, σ2,τ ), (26)
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Algorithm 1 DP-VB variant of the distributed control design.
O�-line:
Choose control horizon h, target probability density If (d1:t+h), and initial value of
f (0)(ui,τ |·) for each decision maker i = 1 . . . n.
On-line:
At each time t, for each decision-maker i, do:

1. For each τ = t+ h, t+ h− 1, . . . , t do

(a) Start negotiation with counter j = 1, and initial guess f (0)(ui,τ |·),
(b) Compute moments required by the neighbors and communicate them,
(c) Compute jth value of control strategy f (j)(ui,τ |·) using moments obtained from

the neighbors,
(d) If the strategy convergence is not reached and j < jIV B , increase j and goto

(a), stop otherwise.

2. Apply designed control action ui,t from the converged strategy.

where σi,τ is given using Cholesky decomposition of Φui,τ in the same form as in (12) and the
second line follows from equivalent derivation for u2,τ . Now, we can formulate the necessary
moments for substitution into (22):

Ef(ui,τ |d1:τ−1)(ui,τ ) = Qi,τ [φ′τ , 1]′, (27)

Ef(ui,τ |d1:τ−1)(ui,τΦuu,τu′i,τ ) = Qi,τ [φ′τ , 1]Φuu,τ [φ′τ , 1]′Q′i,τ + Φuu,τσi,τ . (28)

This �nalizes the list of results that are necessary to run the IVB algorithm in each time
step of the horizon τ = t+ h, . . . , t+ 1. This variant will be denoted as DP-VB algorithm,
Algorithm 1.

3.2 Alternative evaluations

Note that the set of conditions (18) has to be met for each time of the horizon, τ . Put
together, we may interpret it as a set of n× (h+ 1) conditions of optimality. If the control
strategies f(ui,τ |·) were conditionally independent from f(ui,τ−1|·), then the iterations could
be performed in any order and still guaranteed to converge to a local minimum. This would
be a great property since it would allow asynchronous communication between the decision
makers, and guarantee robustness against lost messages. However, this is not automatically
guaranteed due to dependence f(ui,τ |ui,τ−1). Therefore, a change of order of the time
index can lead to an increase of the KL divergence within one iteration due to inaccurate
γ(d1:τ−1) from (19). However, similar di�culty arise in the case of on-line variational Bayes
and the convergence is still guaranteed by means of stochastic approximations [14]. The
only drawback is slower convergence in comparison to the standard IVB algorithm. We
conjecture that it is also the case in our approach.

If our conjecture holds, then we may change the order of dynamic programming and IVB
iterations. Speci�cally, each decision maker �rst exchange messages about expected val-
ues [Qi,t, . . . , Qi,t+h, σi,t, . . . , σi,t+h] with its neighbors and then designs its strategy using
backward evaluation (5), see Algorithm 2 for details. The new moments are send to the
neighbors for the next iterations. This algorithm will be denoted as VB-DP.

4 Example

Consider the following 3-output 2-input system:

f(yt|ψt,Σ) = N (Θψt,Σy), (29)

where

yt = [y1,t, y2,t, y3,t]′, ψt = [y1,t−1, y2,t−1, y3,t−1, u1,t, u2,t, u1,t−1, u2,t−1]′,
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Algorithm 2 VB-DP variant of the distributed control design.
O�-line:
Choose control horizon h, target probability density If (d1:t+h), and initial value of
f (0)(ui,τ |·) for each decision maker i = 1 . . . n.
On-line:
At each time t, for each decision-maker i, do:

1. Start negotiation with counter j = 1, and f (0)(ui,τ |·).
2. Compute jth value of control strategy f (j)(ui,τ |·) on the whole horizon τ = t+h, . . . t

using moments obtained from the neighbors, evaluate moments required by the
neighbors and communicate them,

3. If the strategy convergence is not reached and j < jIV B , increase j and goto 2, stop
otherwise.

4. Apply designed control action ui,t from the converged strategy.
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Figure 1: Example run of the controlled system. The target values for the inputs and the
outputs are displayed in thin full line. The typical realization of outputs and inputs for all
tested algorithms are also displayed for illustration.

Θ =

[ 0.8 0.2 0 −0.3 0.4 0 0 0
−0.2 0.5 −0.8 0.2 0.5 −0.2 −0.5 0

0 1.1 −0.5 0 0 −0.2 0.3 0

]
. (30)

The target probability densities are

If(yt) = N

 y1,t

y2,t

y3,t

 ,[ 0.01
0.01

0.01

] , If(ut) = N
([

0
0

]
,

[
100

100

])
,

(31)

with values of y1,t, y2,t, y3,t displayed in Fig 1 (solid lines). The choice of diagonal covariance
matrices in (31) allows the convergence of algorithms from Section 3 to the centralized
solution, Section 2.

Three control strategies were tested:

FPD: as the centralized strategy (Section 2.1),
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Figure 2: Convergence of the terminal loss (the sum of di�erences from target values) of the
decentralized DP-VB and VB-DP algorithms to the terminal loss of the centralized FPD
solution as a function of the number of IVB iterations for two variants of system parameters.

DP-VB: decentralized evaluation of the FPD control via multiple VB algorithms, one at
each time τ on the horizon (Section 3.1),

VB-DP: decentralized evaluation of the FPD control via a single the VB algorithm on the
whole horizon (Section 3.2).

A comparative Monte Carlo study with 15 runs of the system with parameter (30) was
performed to establish convergence of the decentralized strategy design to the centralized
one. An example run of the controlled system is shown in Fig. 1. Results of the study are
displayed in Fig. 2 via dependence of the terminal loss on the number of iterations of the
IVB algorithm, jIV B . Note that the results converged to the centralized solution after a
few iterations; the full convergence is allowed using diagonal covariance matrices in (31). As
expected, the DP-VB variant converges faster than the VB-DP. Suitability of each strategy
than depends on the quality of communication between agents. The VB-DP algorithm may
be attractive especially for systems with higher latency in communication.

The di�erence is even more visible on a more demanding system with parameters

Θ =

[ 0.8 0.2 0.5 −0.3 0 0.4 0 0
−0.2 0.5 −0.2 0.2 −0.2 0.5 −0.5 0
0.5 1.1 −0.5 0 −0.2 0 0.3 0

]
. (32)

The results of the same Monte Carlo experiment for the new value of parameter Θ are dis-
played in Fig. 2, right. While the DP-VB algorithm reaches performance of the centralized
FPD after 14 iterations, the VB-DP algorithms requires more than 20 iterations to converge.
The number of iterations required to reach the centralized solution is rather high, since the
IVB algorithm was initialized with f (0)(ui,t|·) = If(ui,t) for both variants. The purpose of
this choice was to verify if the algorithm converges to the correct solution even from poor
initial conditions.

5 Conclusion

The presented methodology for design of approximate decision makers is based on fully
probabilistic control and decentralization is achieved by imposing conditional independence
between control inputs. The general method yields two principle outputs: (i) an iterative
algorithm that is known to systematically decrease the loss function, and (ii) the moments
that needs to be exchanged to achieve optimum performance. Under the condition of di-
agonal covariance matrices of target probability densities, the simulation results suggest
that the decentralized control is able to reach the same performance as the centralized one.
This was achieved at the price of all decision makers having full model of the system and
intensive negotiation with high volume of communication. We have shown in simulation
that the intensity of communication can be lowered by an alternative order of evaluation
and communication. The Variational Bayes approach can cope with limited computational
time, the quality of the solution depends on the number of iterations in the IVB algorithm.
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Further simpli�cations can be achieved by imposing additional restrictions (e.g. in the form
of conditional independence) on the solution.
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